重新定义髋关节发育不良和撞击患者骨关节炎的自然病程

2021-10-15    点击量:873 我要说

作者:Cody C Wyles, Mark J Heidenreich, Jack Jeng, Dirk R Larson, Robert T Trousdale, Rafael J Sierra.

作者单位: Mayo Medical School, Mayo Clinic, Rochester, MN, USA.

译者:陶可 北京大学人民医院骨关节科

摘要

背景:包括发育性髋关节发育不良 (DDH) 和股骨髋臼撞击症 (FAI) 在内的结构性髋关节畸形被认为使患者易发生退行性骨关节炎变化。然而,这些畸形的自然病程尚不清楚。

目的:(1)在对侧髋关节没有任何髋关节疾病影像学证据的单侧全髋关节置换术患者中,根据形态学特征,自体髋关节骨关节炎的自然病程和进展情况如何? (2)在对侧髋关节没有任何髋关节病影像学证据的单侧全髋关节置换术患者中,预测退行性改变的差异率的影像学参数是什么?

方法:确定了我们机构1980年至1989年间接受单侧初次THA的所有55岁或以下患者(n=722名患者)。对对侧髋关节的术前 X 线片进行了审查,并且仅包括具有至少10年X线线照相随访的 Tönnis 0级退行性改变的髋关节。共有172名患者符合所有资格标准,具有以下结构诊断:48名DDH、74名FAI和40名正常形态,另外6%(172名患者中的10名)符合所有标准,但随访时间少于10年。纳入研究时的平均年龄为47岁(范围为18-55岁),本研究中56%(162名中的91名)患者为女性。平均随访时间为20年(范围,10-35年)。放射学指标,结合两位经验丰富的关节置换术骨科医生的审查,确定髋关节结构诊断为DDH、FAI或正常形态。审查每张可用的后续前后位AP X线片,以确定从Tönnis 0级到3级直至最后一次随访或THA手术干预时间的进展。存活率通过Kaplan-Meier方法、风险比和多态建模进行分析。 35名患者最终接受了THA:16名(33%) DDH、13名(18%) FAI和6名(15%) 正常形态。

结果:DDH患者的退行性变化最快,其次是FAI和正常形态。在最近出现Tönnis 1退行性改变的患者中,根据髋关节形态学,DDH在10年内接受THA的概率约为三分之一,对于FAI和正常形态的髋关节,20年的概率约为DDH为三分之二,FAI和正常形态髋关节均为二分之一。具有以下发现的患者影像学退变的可能性增加:股骨头外移>8mm,股骨头挤压指数>0.20,髋臼深/宽指数<0.30,外侧中心边缘角<25° 和Tönnis角>8°。

结论:DDH患者最早发生退行性改变,而FAI患者的自然病程与结构正常的髋部非常相似。然而,凸轮畸形和伴随髋臼发育不良的患者更迅速地发展为骨关节炎。尽管这项研究的结果不能与高度活跃的 FAI 患者直接相关,但这些发现表明,将FAI校正为正常形态可能只会对自然病程的影响微乎其微,尤其是在Tönnis 0之后进行干预时。放射学参数分析显示向发育不良形态的增量变化增加了退行性变化的风险。


图 1 该图总结了研究中的所有 162 名患者以及他们在长期随访中观察到的退行性变化各个阶段的转变。这些转换是后续多态Markov建模的基础。


图 2 这些 Kaplan-Meier (KM) 图展示了髋关节形态的自然髋关节存活率。一般而言,DDH 患者进展最快,其次是 FAI,正常形态的髋部进展最慢。这在早期阶段并不重要;然而,与从 Tönnis 0 到 Tönnis 3 和 Tönnis 0 到 Tönnis 3 或 THA 的结构正常形态髋关节相比,发育不良患者的生存率明显更差。


表 1. 具有退行性变化阶段的患者和影像学因素的 Kaplan-Meier 分析

KM = Kaplan-Meier; CI = 置信区间; DDH = 髋关节发育不良; FAI = 股骨髋臼撞击。


表 2. 具有退行性变化阶段的患者和放射学因素的 Cox 比例风险回归

HR = 风险比; CI = 置信区间; DDH = 髋关节发育不良; FAI = 股骨髋臼撞击。


表3.基于髋关节形态的每个Tönnis 分级的平均年数 CI = 置信区间。


表 4. 基于当前 Tönnis分级转换到不同 Tönnis 分级的概率和髋关节形态


图 3A-B 这些前后 AP位 骨盆 X 线片显示了一名典型的左髋发育不良的研究患者。 (A) 本片是研究纳入时右髋的术前 X 线片,此时患者左髋定义为 Tönnis 0 退行性改变。 (B) 这张随后的 X 线片是在 18 年后拍摄的,此时左髋出现了 Tönnis 3 级退行性改变。


表 5. 诊断性放射照相截断值与建议的预后截断值的比较

OA = 骨关节炎; DDH = 髋关节发育不良; FAI = 股骨髋臼撞击。


图 4A-D 该图以连续方式显示了股骨头外移,以描述对整个队列中髋关节退变风险的影响。水平虚线表示相对风险为 1。1 cm 处的红色垂直虚线表示 DDH([1 cm)与正常形态(>1 cm)髋部形态学诊断的共同临界值。曲线实线显示了作为股骨头外移化函数的退化的相对风险。曲线虚线代表相对风险的 95% CI。股骨头外移化超过 8 毫米时,变性风险增加。


图 5A-D 该图以连续方式显示了股骨头挤压指数,以描述对整个队列中髋关节退变风险的影响。水平虚线表示相对风险为 1。0.25 处的红色垂直虚线表示 DDH (> 0.25) 与正常形态 (< 0.25) 髋部形态学诊断的共同临界值。曲线实线显示了作为股骨头挤压指数函数的退化的相对风险。曲线虚线代表相对风险的 95% CI。股骨头挤压指数超过 0.20 时,变性风险增加。


图 6A-D 该图以连续方式显示髋臼深宽指数,以描述对整个队列中髋关节退变风险的影响。水平虚线表示相对风险为 1。0.38 处的红色垂直虚线表示 DDH (< 0.38) 与正常形态 (> 0.38) 髋部形态学诊断的共同临界值。曲线实线显示了作为髋臼深宽指数函数的退化的相对风险。曲线虚线代表相对风险的 95% CI。髋臼深宽指数低于 0.30 时,退化风险增加。


图 7A-D 该图以连续方式显示外侧中心-边缘角度,以描述对整个队列中髋关节退变风险的影响。水平虚线表示相对风险为 1。25 和 40 处的红色垂直虚线表示 DDH (< 25) 与正常形态 (25-40) 与 FAI (>40) 髋关节形态学诊断的常见临界值。曲线实线显示了作为外侧中心边缘角函数的退化的相对风险。曲线虚线代表相对风险的 95% CI。外侧中心边缘角低于 25 度时,退化风险增加。


图 8A-D 该图以连续方式显示了 Tönnis 角,以描述对整个队列中髋关节退化风险的影响。水平虚线表示相对风险为 1。0 和 10 处的红色垂直虚线表示 FAI (< 0) 与正常形态 (0-10) 与 DDH (> 10) 髋部的形态学诊断的常见临界值。曲线实线显示了作为 Tönnis 角函数的退化的相对风险。曲线虚线代表相对风险的 95% CI。当 Tönnis 角大于 8 度时,退化的风险会增加。

讨论

DDH和FAI是结构性髋关节畸形,被认为会加剧过早的退行性变化。然而,人们对这些疾病的自然病程,特别是那些加剧骨关节炎的因素知之甚少。目前的调查表明,在髋部发生轻度退行性改变后,与FAI和正常形态相比,DDH患者在10年和20年的随访中进展为终末期骨关节炎或THA的可能性更高。此外,这项工作建立的放射学截止值与骨关节炎进展的风险增加有关,并且逐渐向发育不良的形态变化预示着预后较差。

这项研究有许多局限性。首先,最终分析中包含的三组中的每一组的样本量都适中,这可能解释了为什么尽管点估计效果实际上看起来很大,但几个结果却只趋向于显着。因此,对于某些分析,真实效果可能被低估或高估。然而,像这样的队列传统上很难获得,这对于我们的研究尤其如此,其资格标准比以前关于该主题的工作更严格。其次,所有测量和分类均基于前后AP位骨盆X线片。不幸的是,这是研究中每个患者在每个随访时间点唯一可用的视图。众所周知,在现代实践中,替代的X线图像和3D成像通常用于提供有关髋关节形态的更完整信息。第三,对侧THA患者的DDH、FAI和正常形态髋部的自然病程可能无法复制其他人群。这些患者可能会对他们的原生髋关节施加更多压力,或者考虑到他们第一次进行全髋关节置换术的年龄很小,他们的软骨本质上很差。然而,对侧THA对于确定一组将接受连续放射学随访的患者至关重要。更重要的是,它提供了一种极好的方法来控制所研究的原生髋关节的预后风险,因为在随后的几十年中,专门针对退行性关节疾病接受THA的年轻患者可能对原生髋关节有类似的需求。如果我们假设对侧THA患者活动较少,这可能被视为最好的情况。此外,这在FAI髋关节中可能更重要,因为活动和ROM导致撞击导致关节的机械损伤。第四,标准的射线照相随访间隔限制了过渡日期识别的精度。然而,多状态建模的敏感性分析是使用假设丰富和耗尽的数据集进行的。重要的是,该敏感性分析显示与我们报告的结果没有显着差异,增强了对所提供数据的信心。

也许对骨科医生来说最有价值的信息来自多状态建模(表 4)。它表明,对于最近出现Tönnis 1退行性改变的患者,根据髋关节形态学,10年内接受THA的概率为DDH的大约三分之一,FAI和正常形态髋关节的大约五分之一,而大约为同一患者的20年是DDH的三分之二,FAI和正常形态的髋部的二分之一。因此,对DDH患者进行早期关节保护干预似乎比对FAI患者进行干预更可能对其髋关节的自然病程产生积极影响,前提是他们没有大的凸轮畸形并伴有髋臼发育不良。如前所述,两份报告类似地检查了FAI和DDH的自然病程。 Hartofilakidis及其同事回顾性评估了96位髋关节的影像学证据,这些髋关节具有FAI的影像学证据且髋关节没有退行性改变。Murphy及其同事回顾性评估了286名接受THA治疗发育不良的年轻患者。这两项研究都缺乏对照组,也没有描述骨关节炎随时间的进展;此外,在Murphy等人在一项研究中,很大一部分纳入患者在纳入研究时有髋关节退行性改变的迹象。然而,这两项研究的结果在终末期退化率和最终需要THA方面与我们的结果非常相似。共有40.2%的Murphy等人接受了THA,而在我们的发育不良患者研究中,20年和30年分别为28.6%和43.3%。Murphy等人的研究随访时间不清楚;然而,较高的百分比可能是由于一些患者在纳入研究时出现退行性变化的迹象。Hartofilakidis等人的研究组显示终末期关节炎的发生率为17.7%(12.5% 接受THA),平均随访时间为18.5年(范围,10-40年),而20年为19.8%,30年为26.2%,平均在我们对FAI患者的研究中进行了20年(范围,10-35年)的随访。

我们的数据表明,在整个队列中,具有发育不良放射学特征的患者的进展风险最高。这与Murphy及其同事的报告一致,他们记录了他们的研究中最终发展为骨关节炎的患者的放射学特征与更严重的发育不良一致。另一方面,我们的数据还表明,在FAI患者中,股骨头挤压指数增加是预示关节退行性变的最强影像学指标。归类为FAI且股骨头挤压指数增加的患者符合FAI的凸轮亚型。我们还发现,患有凸轮型FAI并伴有低外侧中心边缘角或高Tönnis角(均代表髋臼发育不良)的患者骨关节炎进展的风险增加。之前已经记录了髋臼发育不良和FAI的同时发生,作者认为这种组合会增加关节内病变的风险。 Tannast及其同事最近发表了基于髋臼保留手术管理的队列的髋臼过度覆盖和覆盖不足的修正参考值,假设先前的截止值可能无法提供最佳准确性。从不同的角度检查这一点,我们试图了解当前放射学参数的诊断临界值是否可以预测骨关节炎的进展。股骨头挤压指数、股骨头外移、髋臼深宽指数和Tönnis角的数据表明,与提示发育不良的临界值相比,退化风险实际上开始增加时的极端值要小(表5)。这些新提议的放射学截断值提供了一个机会来修改患者的自然病程预测。

总而言之,这些数据可以作为骨科医生的辅助预后工具,就如何管理疾病以及是否或何时进行干预提供更明智的患者咨询和决策。例如,尽管这项研究的结果不能与高度活跃的FAI患者直接相关,但预测表表明,将FAI校正为正常形态可能只会对自然病程的影响微乎其微,尤其是在Tönnis 0之后进行干预时。积极的校正最有可能发生在具有大凸轮病变和浅窝的患者中。然而,数据还表明,在早期Tönnis阶段将DDH校正为正常形态似乎更有可能改变患者的自然病史,早期干预可提供更大的益处。未来的研究应该通过在接受和未接受关节保留手术的结构性髋关节畸形患者之间使用类似的多状态建模方法来正式评估这些问题。该研究还确定了以连续和分类方式预测更快速退行性变化的影像学参数,按髋关节形态进行细分。具体而言,发育不良形态的渐进变化预示着更差的预后。尽管这项研究提供了新信息,但最大的弱点可能是围绕许多点估计的统计不确定性。其他中心的类似努力对于验证或调整和提高这些结果的精度是有价值的。

文献出处:Cody C Wyles, Mark J Heidenreich, Jack Jeng, Dirk R Larson, Robert T Trousdale, Rafael J Sierra. The John Charnley Award: Redefining the Natural History of Osteoarthritis in Patients With Hip Dysplasia and Impingement. Comparative Study Clin Orthop Relat Res. 2017 Feb;475(2):336-350. doi: 10.1007/s11999-016-4815-2.


原文:

The John Charnley Award: Redefining the Natural History of Osteoarthritis in Patients With Hip Dysplasia and Impingement

Abstract

Background: Structural hip deformities including developmental dysplasia of the hip (DDH) and femoroacetabular impingement (FAI) are thought to predispose patients to degenerative joint changes. However, the natural history of these malformations is not clearly delineated.

Questions/purposes: (1) Among patients undergoing unilateral THA who have a contralateral hip without any radiographic evidence of hip disease, what is the natural history and progression of osteoarthritis in the native hip based on morphological characteristics? (2) Among patients undergoing unilateral THA who have a contralateral hip without any radiographic evidence of hip disease, what are the radiographic parameters that predict differential rates of degenerative change?

Methods: We identified every patient 55 years of age or younger at our institution who received unilateral primary THA from 1980 to 1989 (n = 722 patients). Preoperative radiographs were reviewed on the contralateral hip and only hips with Tönnis Grade 0 degenerative change that had minimum 10-year radiographic followup were included. A total of 172 patients met all eligibility criteria with the following structural diagnoses: 48 DDH, 74 FAI, and 40 normal morphology, and an additional 6% (10 of the 172 patients) met all eligibility criteria but were lost to followup before the 10-year minimum. Mean age at the time of study inclusion was 47 years (range, 18-55 years), and 56% (91 of 162) of the patients in this study were female. Mean followup was 20 years (range, 10-35 years). Radiographic metrics, in conjunction with the review of two experienced arthroplasty surgeons, determined the structural hip diagnosis as DDH, FAI, or normal morphology. Every available followup AP radiograph was reviewed to determine progression from Tönnis Grade 0 to 3 until the time of last followup or operative intervention with THA. Survivorship was analyzed by Kaplan-Meier methodology, hazard ratios, and multistate modeling. Thirty-five patients eventually underwent THA: 16 (33%) DDH, 13 (18%) FAI, and six (15%) normal morphology.

Results: Degenerative change was most rapid in patients with DDH followed by FAI and normal morphology. Among patients who recently developed Tönnis 1 degenerative change, the probability of undergoing THA in 10 years based on hip morphology was approximately one in three for DDH and one in five for both FAI and normal morphology hips, whereas the approximate probability at 20 years was two in three for DDH and one in two for both FAI and normal morphology hips. The likelihood of radiographic degeneration was increased in patients with the following findings: femoral head lateralization > 8 mm, femoral head extrusion index > 0.20, acetabular depth-to-width index < 0.30, lateral center-edge angle < 25°, and Tönnis angle > 8°.

Conclusions: Degenerative change occurred earliest in patients with DDH, whereas the natural history of patients with FAI was quite similar to structurally normal hips. However, patients with cam deformities and concomitant acetabular dysplasia developed osteoarthritis more rapidly. Although the results of this study cannot be directly correlated to highly active patients with FAI, these findings suggest that correction of FAI to a normal morphology may only minimally impact the natural history, especially if intervention takes place beyond Tönnis 0. Analysis of radiographic parameters showed that incremental changes toward dysplastic morphology increase the risk of degenerative change.

DDH and FAI are structural hip deformities thought to potentiate premature degenerative change. However, the natural history of these conditions, particularly about those factors that exacerbate osteoarthritis, is poorly understood. The current investigation demonstrates that after mild degenerative change develops in the hip, patients with DDH have a higher probability of progressing to end-stage osteoarthritis or THA at 10- and 20-year followup compared with FAI and normal morphology. Furthermore, radiographic cutoffs are established by this work that are associated with increased risk of osteoarthritis progression with incremental changes toward a dysplastic morphology portending a worse prognosis.

This study has a number of limitations. First, the sample size is modest for each of the three groups included in the final analysis, which likely explains why several results only trended toward significance despite point estimates of effect that actually seemed large. As such, the true effect may be underestimated or overestimated for some analyses. However, cohorts such as this have traditionally been very difficult to obtain, which was especially true for our study with more stringent eligibility criteria than previous work on the topic. Second, all measurements and categorization were based off AP pelvis radiographs. Unfortunately, this was the only view available for every patient in the study at each followup time point. It is well recognized that alternative radiographic views and three-dimensional imaging are often used to provide more complete information about hip morphology in modern practice. Third, the natural history of DDH, FAI, and normal morphology hips in patients with contralateral THA may not replicate other populations. It is possible that these patients place more stress on their native hip or that perhaps they have intrinsically poor cartilage given the young age of their first THA. However, the contralateral THA was essential to identifying a group of patients who would undergo serial radiographic followup. More importantly, it provided an excellent means of controlling prognostic risk in the native hip under study because young patients receiving THA specifically for degenerative joint disease presumably place similar demand on their native hip during ensuing decades. This could potentially be seen as a best case scenario if we assume that patients with contralateral THA are less active. Furthermore, this would likely be more important in FAI hips in which activity and ROM resulting in impingement lead to mechanical damage of the joint. Fourth, standard radiographic followup intervals limited the precision of transition date identification. However, a sensitivity analysis of the multistate modeling was conducted with hypothetically enriched and depleted data sets. Importantly, this sensitivity analysis revealed no significant differences from our reported findings, strengthening confidence in the presented data.

Perhaps the most valuable information for surgeons comes from the multistate modeling (Table 4). It shows that for a patient who recently developed Tönnis 1 degenerative change, the probability of undergoing THA in 10 years based on hip morphology is roughly one in three for DDH and one in five for both FAI and normal morphology hips, whereas the approximate probability at 20 years for the same patient is two in three for DDH and one in two for both FAI and normal morphology hips. Thus, early joint preservation intervention on patients with DDH seems more likely to positively influence the natural history of their hip than intervention on patients with FAI, provided they do not have a large cam deformity with concomitant acetabular dysplasia. As mentioned, two reports have similarly examined the natural history of FAI and DDH. Hartofilakidis and colleagues [10] retrospectively evaluated 96 hips with radiographic evidence of FAI and no degenerative change in the hip. Murphy and colleagues [15] retrospectively evaluated 286 young patients who received THA for dysplasia. Both of these studies lacked a control group and did not describe progression of osteoarthritis over time; furthermore, in the Murphy et al. study, a substantial portion of included patients had signs of degenerative change in the hip under study at the time of inclusion. However, results of these two studies were quite similar to ours with respect to rates of end-stage degeneration and eventual need for THA. A total of 40.2% of Murphy et al.’s group underwent THA compared with 28.6% at 20 years and 43.3% at 30 years in our study for patients with dysplasia. The followup time is unclear in the Murphy et al. study; however, the higher percentage may be accounted for by the fact that some patients had signs of degenerative change at the time of study inclusion. Hartofilakidis et al.’s group showed a 17.7% rate of endstage arthritis (12.5% received THA) with mean followup of 18.5 years (range, 10–40 years) compared with 19.8% at 20 years and 26.2% at 30 years with mean followup of 20 years (range, 10–35 years) in our study for patients with FAI.

Our data suggest that patients with radiographic features of dysplasia were at highest risk of progression in the entire cohort. This is in line with the report by Murphy and colleagues [15] who documented radiographic features consistent with more severe dysplasia in patients from their study who eventually developed osteoarthritis. At the other end of the spectrum, our data also demonstrated that among patients with FAI, an increased femoral head extrusion index was the strongest radiographic measure to portent joint degeneration. Patients classified with FAI and increased femoral head extrusion indices fit with the cam subtype of FAI. We also found that patients with cam-type FAI and concomitant low lateral center-edge angles or high Tönnis angles (both representing acetabular dysplasia) were at increased risk of osteoarthritis progression. Co-occurrence of acetabular dysplasia and FAI has been documented previously with authors positing that the combination increases the risk of intraarticular pathology [2, 6, 11, 12, 16]. Tannast and colleagues [20] recently published modified reference values for acetabular overcoverage and undercoverage based on a cohort managed with hip preservation surgery, postulating that previous cutoffs may not provide optimal accuracy. Examining this from a different perspective, we attempted to understand if current diagnostic cutoffs of radiographic parameters are predictive of osteoarthritis progression. The data for femoral head extrusion index, femoral head lateralization, acetabular depth-to-width index, and Tönnis angle suggest that risk of degeneration actually begins increasing with less extreme values than are suggestive of cutoffs for dysplasia (Table 5). These new proposed radiographic cutoffs provide an opportunity to modify natural history prognostication for patients.

In summary, these data can serve as an adjuvant prognostic tool for surgeons, enabling more informed patient counseling and decisions on how to manage disease as well as if or when to intervene. For example, although results from this study cannot be directly correlated to highly active patients with FAI, the predictive tables indicate that correction of FAI to a normal morphology may only minimally impact the natural history, especially if intervention takes place beyond Tönnis 0. Positive corrections are most likely to take place in patients with large cam lesions and shallow sockets. However, the data also indicate that correction of DDH to normal morphology at early Tönnis stages seems more likely to alter a patient’s natural history with earlier intervention providing greater benefit. Future studies should formally evaluate these questions by using a similar multistate modeling approach between patients with structural hip deformity who did and did not receive joint preservation surgery. This study also identified radiographic parameters that predict more rapid degenerative change, both in continuous and categorical fashions, subclassified by hip morphology. Specifically, incremental changes toward dysplastic morphology portend a worse prognosis. Although this study provides new information, perhaps the greatest weakness is the statistical uncertainty around many of the point estimates. Similar efforts at other centers would be valuable to either validate or adjust and improve precision of these results.

分享到: