您的位置: 骨科在线 > 学术园地 > 期刊导读 > Journal of Bone & Joint Surgery > 正文

A Novel Low-Molecular-Weight Compound Enhances Ectopic Bone Formation and Fracture Repair

第一作者:Eugene Wong

2013-04-03 点击量:761   我要说

Eugene Wong, Sreedhara Sangadala,  Scott D. Boden, Katsuhito Yoshioka

  William C. Hutton,Colleen Oliver, Louisa Titus

Background: 

Use of recombinant human bone morphogenetic protein-2 (rhBMP-2) is expensive and may cause local side effects. A small synthetic molecule, SVAK-12, has recently been shown in vitro to potentiate rhBMP-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype. The aims of this study were to test the ability of SVAK-12 to enhance bone formation in a rodent ectopic model and to test whether a single percutaneous injection of SVAK-12 can accelerate callus formation in a rodent femoral fracture model.

Methods: 

Collagen disks with rhBMP-2 alone or with rhBMP-2 and SVAK-12 were implanted in a standard athymic rat chest ectopic model, and radiographic analysis was performed at four weeks. In a second set of rats (Sprague-Dawley), SVAK-12 was percutaneously injected into the site of a closed femoral fracture. The fractures were analyzed radiographically and biomechanically (with torsional testing) five weeks after surgery.

Results: 

In the ectopic model, there was dose-dependent enhancement of rhBMP-2 activity with use of SVAK-12 at doses of 100 to 500 μg. In the fracture model, the SVAK-12-treated group had significantly higher radiographic healing scores than the untreated group (p = 0.028). Biomechanical testing revealed that the fractured femora in the 200 to 250-μg SVAK-12 group were 43% stronger (p = 0.008) and 93% stiffer (p = 0.014) than those in the control group. In summary, at five weeks the femoral fracture group injected with SVAK-12 showed significantly improved radiographic and biomechanical evidence of healing compared with the controls.

Conclusions: 

A single local dose of a low-molecular-weight compound, SVAK-12, enhanced bone-healing in the presence of low-dose exogenous rhBMP-2 (in the ectopic model) and endogenous rhBMPs (in the femoral fracture model).

Clinical Relevance: 

This study demonstrates that rhBMP-2 responsiveness can be enhanced by a novel small molecule, SVAK-12. Local application of anabolic small molecules has the potential for potentiating and accelerating fracture-healing. Use of this small molecule to lower required doses of rhBMPs might both decrease their cost and improve their safety profile.

分享到:

   


骨科在线 北京经纬在线网络科技有限公司

京ICP备15001394号-2 京公网安备11010502051256号

 信息产业部备案管理系统

地址:北京市朝阳区朝阳门北大街乙12号1号楼8层08公寓H

联系电话:010-85615836

Email:orth@orthonline.com.cn